ECE 307 – Techniques for Engineering Decisions

Lecture 2. Introduction to Linear Programming

George Gross

Department of Electrical and Computer Engineering
University of Illinois at Urbana-Champaign

OUTLINE

- ☐ The nature of a programming or an optimization
 - problem
- \square Linear programming (LP): salient characteristics
- \Box The LP problem formulation
- \Box The *LP* problem solution
- ☐ Extensive illustrations with numerical examples

EXAMPLE 1: HIGH/LOW HEEL SHOE CHOICE PROBLEM

- □ A lady is headed to a party and is trying to find a pair of shoes to wear; the choice is narrowed down to two possible choices:
 - O a high heel pair; and
 - O a low heel pair
- ☐ The high heel shoes look more beautiful but are not as comfortable as the competing pair
- ☐ Which pair should she choose?

MODEL FORMULATION

■ We first quantify our assessment along the two dimensions of *looks* and *comfort* in a table

aspect	maximum value	assessment		weighting
		high heels	low heels	factor (%)
aesthetics	5.0	4.2	3.6	70
comfort	5.0	3.5	4.8	30

□ Next, we represent the decision in terms of two decision variables:

MODEL FORMULATION

$$x_{H} = \begin{cases} 1 & choose \ high \\ 0 & otherwise \end{cases} \qquad x_{L} = \begin{cases} 1 & choose \ low \\ 0 & otherwise \end{cases}$$

□ We formulate the objective to be the maximization of the weighted assessment

□ We state the objective in terms of the defined

decision variables

$$max Z = x_H[(4.2)(0.7) + (3.5)(0.3)] + x_L[(3.6)(0.7) + (4.8)(0.3)]$$

MODEL FORMULATION

■ Next, we consider the problem constraints:

O only one pair of shoes can be selected

O each decision variable is nonnegative

 \Box We express the constraints in terms of χ_H and χ_L

$$x_H + x_L = 1$$

$$x_H \geq \theta, x_L \geq \theta$$

PROBLEM STATEMENT SUMMARY

□ Decision variables:

$$x_{H} = \begin{cases} 1 & choose \ high \\ 0 & otherwise \end{cases} \qquad x_{L} = \begin{cases} 1 & choose \ low \\ 0 & otherwise \end{cases}$$

□ Objective function:

$$max Z = 3.99 x_H + 3.96 x_L$$

□ Constraints:

$$x_{H} + x_{L} = 1$$
 $x_{H} \ge 0, x_{L} \ge 0$

THE OPTIMAL SOLUTION

 \Box We determine the values x_H^* and x_L^* which result in the value of Z^* such that

$$Z^* = Z(x_H^*, x_L^*) \ge Z(x_H, x_L)$$
for all feasible (x_H, x_L)

- ☐ We call such a solution an optimal solution
- □ A feasible solution is one that satisfies all the constraints
- ☐ The *optimal* solution, denoted by (x_H^*, x_L^*) , is selected from all the *feasible* solutions to the problem so as to satisfy (†)

SOLUTION APPROACH: EXHAUSTIVE SEARCH

□ We enumerate all the feasible solutions: in this problem there are only two alternatives:

$$A: \begin{cases} x_H = 1 \\ x_L = 0 \end{cases} \qquad B: \begin{cases} x_H = 0 \\ x_L = 1 \end{cases}$$

 \Box We evaluate Z for A and B and compare

$$Z_A = 3.99$$

$$Z_{R} = 3.96$$

so that $Z_A > Z_B$ and so A is the optimal choice

☐ The *optimal* solution is

$$x_{H}^{*}=1$$
, $x_{L}^{*}=0$ and $Z^{*}=3.99$

CHARACTERISTICS OF A PROGRAMMING/OPTIMIZATION PROBLEM

- ☐ The objective is to select the decision among the various alternatives and therefore requires first the *definition* of the *decision variables*
- □ We determine the "best" decision is on the basis of the objective function and so we need to obtain the mathematical formulation of the objective function
- ☐ The decision must satisfy *each specified constraint* and so we require the *mathematical statement* of the

problem constraints

CLASSIFICATION OF PROGRAMMING PROBLEMS

The problem statement is characterized by :

O decision variables

continuous valued

integer valued

O objective function

linear

non linear

O constraints

linear

non linear

PROGRAMMING PROBLEM CLASSES

☐ Linear/nonlinear programming

□ Static/dynamic programming

□ Integer programming

Mixed programming

EXAMPLE 2: CONDUCTOR PROBLEM

□ A company is producing two types of conductors for *EHV* transmission lines

type	conductor	production capacity (unit/day)	metal needed (tons/unit)	profits (\$/unit)
1	ACSR 84/19	4	1/6	3
2	ACSR 18/7	6	1/9	5

- ☐ The supply department can provide up to 1 *ton* of metal each day
- □ We schedule the production so as to maximize the profits of the company

PROBLEM ANALYSIS

- ☐ Formulation of the objective: to *maximize* the profits of the company
- Means to attain this objective: determine how many units of product 1 and of product 2 to produce each day
- □ Consideration of all the constraints: the daily production capacity limits, the daily metal supply

limit and common sense requirements

MODEL CONSTRUCTION

■ We define the decision variables to be

$$x_1 = number of type 1 units produced per day$$

$$x_2$$
 = number of type 2 units produced per day

☐ We define the objective to be

$$Z = profits (\$/day)$$

$$= 3x_1 + 5x_2$$

☐ Sanity check for units of the objective function

$$(\$/day) = (\$/unit) \cdot (unit/day)$$

PROBLEM STATEMENT

□ Objective function:

$$max Z = 3x_1 + 5x_2$$

- **□** Constraints:
 - O capacity limits:

$$x_1 \leq 4$$
 $x_2 \leq 6$

O metal supply limit:

$$\frac{x_1}{6} + \frac{x_2}{9} \le 1$$

O common sense requirements:

$$x_1 \ge 0$$
, $x_2 \ge 0$

PROBLEM STATEMENT

$$\max Z = 3x_1 + 5x_2$$

s.t.

$$x_1 \leq 4$$

$$x_2 \leq 6$$

$$\frac{x_1}{6} + \frac{x_2}{9} \le 1$$

$$x_1 \ge 0 , x_2 \ge 0$$

VISUALIZATION OF THE FEASIBLE REGION

$$x_1 \geq \theta$$
, $x_1 \leq 4$, $x_2 \geq \theta$

VISUALIZATION OF THE FEASIBLE REGION

VISUALIZATION OF THE FEASIBLE REGION

THE FEASIBLE REGION

FEASIBLE SOLUTION SPACE

CONTOURS OF CONSTANT Z

OPTIMAL SOLUTION

☐ For this simple problem, we can *graphically* obtain

the optimal solution

☐ The *optimal* solution of this problem is:

$$x_{1}^{*} = 2$$
 and $x_{2}^{*} = 6$

☐ The objective value at the *optimal* solution is

$$Z^* = 3x_1^* + 5x_2^* = 36$$

LINEAR PROGRAMMING (LP) PROBLEM DEFINITION

A linear programming problem is an optimization

problem with a linear objective function and linear

constraints.

EXAMPLE 3: ONE-POTATO, TWO-POTATO PROBLEM

- ☐ Mr. Spud manages the *Potatoes-R-Us Co.* which processes potatoes into packages of freedom fries (F), hash browns (H) and chips (C)
- ☐ Mr. Spud can buy potatoes from two sources; each source has distinct characteristics/limits
- ☐ The problem is to determine the respective quantities Mr. Spud needs to buy from source 1 and from source 2 so as to maximize his profits

EXAMPLE 3: ONE-POTATO, TWO-POTATO PROBLEM

☐ The given data are summarized in the table

product	source 1 uses (%)	source 2 uses (%)	sales limit (tons)
$oldsymbol{F}$	20	30	1.8
Н	20	10	1.2
C	30	30	2.4
profits (\$/ton)	5	6	_

- ☐ The following assumptions hold:
 - O 30 % waste for each source
 - O production may not exceed the sales limit

ANALYSIS

Decision variables:

 x_1 = quantity purchased from source 1

 x_2 = quantity purchased from source 2

□ Objective function:

$$max Z = 5x_1 + 6x_2$$

Constraints:

$$0.2x_1 + 0.3x_2 \le 1.8 \ (F)$$

$$0.2x_1 + 0.1x_2 \le 1.2 (H) \quad x_1 \ge 0, x_2 \ge 0$$

$$0.3x_1 + 0.3x_2 \le 2.4(C)$$

FEASIBLE REGION DETERMINATION

THE FEASIBLE REGION

EXAMPLE 3: CONTOURS OF CONSTANT Z

THE OPTIMAL SOLUTION

☐ The optimal solution of this problem is:

$$x_{1}^{*} = 4.5$$

$$x_{2}^{*} = 3$$

☐ The objective value at the optimal solution is:

$$Z^* = 5x_1^* + 6x_2^* = 40.5$$

IMPORTANT OBSERVATIONS

- \Box Constant Z lines are parallel and change monotonically along the direction normal to the contours of constant values of Z
- □ An *optimal* solution must be at one of the *corner* points of the feasible region: fortuitously, there are only a *finite* number of *corner points*
- ☐ If a particular *corner point* gives a better solution (in terms of its *Z* value) than that at every other adjacent *corner point*, then, it is an *optimal* solution

CONCEPTUAL SOLUTION PROCEDURE

- ☐ Initialization step: start at a *corner point*
- ☐ Iteration step: move to an improved *adjacent corner*
 - point and repeat this step as many times as
 - needed
- ☐ Stopping rule: stop when the *corner point* solution
 - is better than that at each adjacent corner point
- ☐ This conceptual procedure forms the basis of the

simplex approach

EXAMPLE 3: THE SIMPLEX APPROACH SOLUTION

EXAMPLE 3: THE SIMPLEX APPROACH SOLUTION

step	\boldsymbol{x}_{2}	\boldsymbol{x}_1	Z
0	0	0	0
1	0	6	36
2	4.5	3	40.5
3	6	0	30

EXAMPLE 3: THE SIMPLEX APPROACH SOLUTION

EXAMPLE 3: THE SIMPLEX APPROACH SOLUTION

- 1. Start at (0,0) with Z(0,0) = 0
- 2. (i) Move from (0,0) to (0,6), Z(0,6) = 36
 - (*ii*) Move from (0,6) to (4.5,3); compute Z(4.5,3) = 40.5
- 3. Compare the objective at (4.5,3) to values at (6,0) and at (0,6):

$$Z(4.5,3) \geq Z(6,0)$$

$$Z(4.5,3) \geq Z(0,6)$$

therefore, (4.5,3) is *optimal*

REVIEW

- □ Key requirements of a programming problem:
 - O to make a decision, we must define the *decision* variables
 - O to achieve the specified objective, we must express mathematically the *objective function*
 - O to ensure *feasibility*, the decision variables must

satisfy each mathematically formulated constraint

REVIEW

- \square Key attributes of an LP
 - O the objective function is *linear*
 - O the constraints are *linear*
- ☐ Basic steps in formulating a programming problem
 - definition of decision variables
 - statement of the objective function
 - O formulation of the constraints

REVIEW

- Words of caution: care is required with units and attention is needed to not ignore the *implicit* constraints, such as nonnegativity, and the common sense requirements in an LP formulation
- □ Graphical solution approach for two-variable problems
 - O feasible region determination
 - O contours of constant Z
 - O identification of the vertex with optimal Z *

EXAMPLE 4: QUALITY CONTOL INSPECTION OF GOODS PRODUCED

- ☐ There are 8 grade 1 and 10 grade 2 inspectors available for QC inspection; at least 1,800 pieces must be inspected in each 8—hour day
- □ Problem data are summarized below:

grade level	speed (unit/h)	accuracy (%)	wages (\$/h)		
1	25	98	4		
2	15	95	3		

EXAMPLE 4: INSPECTION OF GOODS PRODUCED

☐ Each error costs \$ 2

☐ The problem is to determine the *optimal*

assignment of inspectors, i.e., the number of

inspectors of grade 1 and that of grade 2 to result

in the least–cost QC inspection effort

EXAMPLE 4: FORMULATION

□ Definition of decision variables:

 x_1 = number of grade 1 inspectors assigned

 x_{2} = number of grade 2 inspectors assigned

- □ Objective function
 - O optimal assignment: minimum costs
 - O costs = wages + errors

EXAMPLE 4: FORMULATION

• each grade 1 inspector costs:

$$4 + 2(25)(0.02) = 5 \% / hr$$

• each grade 2 inspector costs:

$$3 + 2(15)(0.05) = 4.5 \% / hr$$

total daily inspection costs in \$ are

$$Z = 8[5x_1 + 4.5x_2] = 40x_1 + 36x_2 \tag{\$}$$

EXAMPLE 4: FORMULATION

□ Constraints:

O job completion:

$$8(25)x_{1} + 8(15)x_{2} \ge 1,800$$

$$\Leftrightarrow 200x_{1} + 120x_{2} \ge 1,800$$

$$\Leftrightarrow 5x_{1} + 3x_{2} \ge 45$$

O availability limit:

$$x_1 \le 8$$

$$x_2 \le 10$$

O nonnegativity:

$$x_1 \geq 0, x_2 \geq 0$$

EXAMPLE 4: PROBLEM STATEMENT SUMMARY

□ Decision variables:

 x_1 = number of grade 1 inspectors assigned x_2 = number of grade 2 inspectors assigned

□ Objective function:

$$min Z = 40 x_1 + 36 x_2$$

☐ Constraints:

$$5x_1 + 3x_2 \ge 45$$

$$x_1 \le 8$$

$$x_2 \le 10$$

$$x_1 \geq 0, x_2 \geq 0$$

MULTI - PERIOD SCHEDULING

- ☐ More than one period is involved
- ☐ The result of each period affects the initial
 - conditions for the next period and therefore the
 - solution
- ☐ We need to define variables to take into account
 - the initial conditions in addition to the decision
 - variables of the problem

EXAMPLE 5: HYDROELECTRIC POWER SYSTEM OPERATIONS

- ☐ We consider a single operator of a system
 - consisting of two water reservoirs with a
 - hydroelectric plant attached to each reservoir
- ☐ We schedule the two power plant operations over
 - a two-period horizon
- ☐ We are interested in a plan to maximize the total
 - revenues of the system operator

EXAMPLE 5: HYDROELECTRIC POWER SYSTEM OPERATIONS

EXAMPLE 5: kAf RESERVOIR DATA

parameter	reservoir A	reservoir B
maximum capacity	2,000	1,500
predicted inflow in period 1	200	40
predicted inflow in period 2	130	15
minimum allowable level	1,200	800
level at start of period 1	1,900	850

EXAMPLE 5: SYSTEM CHARACTERISTICS

EXAMPLE 5: SYSTEM CHARACTERISTICS

- ☐ Two—tier price for the *MWh* demand in each period
 - O up to 50,000 MWh can be sold @ 20 \$ /MWh
 - O all additional *MWh* are sold @ 14 \$ *lMWh*

EXAMPLE 5: DECISION VARIABLES

variable	quantity denoted	units
x_{H}^{i}	energy sold at 20 \$/MWh	MWh
x_L^i	energy sold at 14 \$/MWh	MWh
$w_A^{\ i}$	plant A water supply for generation	kAf
w_{B}^{i}	plant B water supply for generation	kAf
$S \stackrel{i}{A}$	reservoir A spill	kAf
$S \stackrel{i}{B}$	reservoir B spill	kAf
$r\frac{i}{A}$	reservoir A end of period i level	kAf
r i B	reservoir B end of period i level	kAf

superscript i denotes period i, i = 1, 2

EXAMPLE 5: OBJECTIVE FUNCTION

maximize total revenues from sales

4 of the 16 decision variables 2 for each period

units of Z are in \$

□ Period 1 constraints

- O energy conservation in a lossless system
 - total generation $400w_A^1 + 200w_B^1$ (MWh)
 - total sales $x_H^1 + x_L^1$ (MWh)
 - losses are negelected and so

$$x_{H}^{1} + x_{L}^{1} = 400w_{A}^{1} + 200w_{B}^{1}$$

O maximum available capacity limits

$$w_A^1 \le 150$$

 $w_B^1 \le 87.5$

O reservoir conservation of flow relations

reservoir A:

$$w_A^1 + s_A^1 + r_A^1 = 1,900 + 200 = 2,100 (kAf)$$

res. level at e.o.p. 1

res. level at e.o.p. 0

predicted inflow

reservoir B:

$$w_B^1 + s_B^1 + r_B^1 = 850 + 40 + w_A^1 + s_A^1 (kAf)$$

O limitations on reservoir variables

• reservoir A:

$$1,200 \le r_A^1 \le 2,000$$

(kAf)

• reservoir B:

$$800 \le r_R^1 \le 1{,}500$$

(kAf)

O sales constraint

$$x_H^1 \leq 50,000$$

(kAf)

☐ Period 2 constraints

- O energy conservation in a lossless system
 - total generation $400w_A^2 + 200w_B^2$ (MWh)
 - total sales

$$x_H^2 + x_L^2 \quad (MWh)$$

losses are neglected and so

$$x_H^2 + x_L^2 = 400w_A^2 + 200w_B^2$$

O maximum available capacity limits

$$w_A^2 \le 150$$

 $w_B^2 \le 87.5$

O reservoir conservation of flow relations

• reservoir A:

$$w_A^2 + s_A^2 + r_A^2 = r_A^1 + 130$$
 (kAf)

res. level at e.o.p. 2

res. level at e.o.p. 1

predicted inflow

reservoir B:

$$w_B^2 + s_B^2 + r_B^2 = r_B^1 + 15 + w_A^2 + s_A^2 (kAf)$$

O limitations on reservoir variables

• reservoir A:

$$1,200 \le r_A^2 \le 2,000 \tag{kAf}$$

• reservoir B:

$$800 \le r_B^2 \le 1,500 \tag{kAf}$$

O sales constraint

$$x_H^2 \le 50,000 (kAf)$$

EXAMPLE 5: PROBLEM STATEMENT

☐ 16 decision variables:

$$x_{H}^{i}, x_{L}^{i}, w_{A}^{i}, w_{B}^{i}, s_{A}^{i}, s_{B}^{i}, r_{A}^{i}, r_{B}^{i}, i = 1,2$$

□ Objective function:

$$max \quad Z = 20(x_H^1 + x_H^2) + 14(x_L^1 + x_L^2)$$

- ☐ Constraints:
 - O 20 constraints for the periods 1 and 2
 - O non-negativity constraints on all variables

EXAMPLE 6: DISHWASHER AND WASHING MACHINE PROBLEM

- ☐ The *Appliance Co*. manufactures dishwashers and washing machines
- ☐ The sales targets for next four quarters are:

area day at	n ani abla	quarter t								
product	variable	1	2	3	4					
dishwasher	D_{t}	2,000	1,300	3,000	1,000					
washing machine	W_{t}	1,200	1,500	1,000	1,400					

EXAMPLE 6: QUARTERLY COST COMPONENTS

cost comp	onent	parameter	quarter t costs (\$/unit)					
		1	2	3	4			
manufacturing	dishwasher	dishwasher c_t 125 130						
(\$/unit)	washing machine	v_{t}	90	100	95	95		
storage	dishwasher j_t 5.0 4.5				4.5	4.0		
(\$/unit)	washing machine	k_{t}	4.3	3.8	3.8	3.3		
hourly labor	(\$ /hour)	p_{t}	6.0	6.0	6.8	6.8		

- ☐ Each dishwasher (washing machine) requires 1.5
 - (2) hours of labor
- ☐ The labor hours in each quarter cannot grow or
 - decrease by more than 10 %; there are 5,000 h of
 - labor in the quarter preceding the first quarter
- ☐ At the start of the first quarter, there are 750 dish
 - washers and 50 washing machines in storage

EXAMPLE 6: THE PROBLEM

How to schedule the production in each of the

four quarters so as to minimize the costs while

meeting the sales targets?

EXAMPLE 6: QUARTER t DECISION VARIABLES

symbol	variable						
\boldsymbol{d}_{t}	number of dishwashers produced						
\boldsymbol{w}_{t}	number of washing machines produced						
\boldsymbol{r}_{t}	final inventory of dishwashers						
\boldsymbol{S}_{t}	final inventory of washing machines						
h_t	available labor hours during $oldsymbol{Q}_t$						
	t = 1, 2, 3, 4						

EXAMPLE 6: OBJECTIVE FUNCTION

minimize the total costs for the four quarters

min
$$Z = c_1d_1 + v_1w_1 + j_1r_1 + k_1s_1 + p_1h_1 \leftarrow quarter 1$$

 $+ c_2d_2 + v_2w_2 + j_2r_2 + k_2s_2 + p_2h_2 \leftarrow quarter 2$
 $+ c_3d_3 + v_3w_3 + j_3r_3 + k_3s_3 + p_3h_3 \leftarrow quarter 3$
 $+ c_4d_4 + v_4w_4 + j_4r_4 + k_4s_4 + p_4h_4 \leftarrow quarter 4$

Quarterly flow balance relations:

$$\begin{cases} r_{t-1} + d_{t} - r_{t} = D_{t} \\ s_{t-1} + w_{t} - s_{t} = W_{t} \end{cases} t = 1, 2, 3, 4$$

□ Quarterly labor constraints

$$\begin{cases} 1.5d_{t} + 2w_{t} - h_{t} \leq 0 \\ t = 1, 2, 3, 4 \end{cases}$$

$$\begin{cases} 0.9h_{t-1} \leq h_{t} \leq 1.1h_{t-1} \end{cases}$$

$$h_{_{\scriptscriptstyle{0}}} = 5,000$$

EXAMPLE 6: PROBLEM STATEMENT

d_1	w_1	r_1	s_1	h_1	d_2	w_2	r_2	s_2	h_2	d_3	w_3	r_3	s_3	h_3	d_4	w_{4}	r_4	s_4	h_4	
1		-1			_	_	_	_			J	J	J	J		-	-	-	-	= 1250
	1		-1																	= 1150
1.5	2			-1																≤ 0
				1																≥ 4500
				1																≤ 5500
		1			1		-1													= 1300
			1			1		-1												= 1500
					1.5	2			-1											≤ 0
				-0.9					1											≥ 0
				-1.1					1											≤ 0
							1			1		-1								= 3000
								1			1		-1							= 1000
										1.5	2			-1						≤ 0
									-0.9					1						≥ 0
									-1.1					1						≤ 0
												1			1		-1			= 1000
													1			1		-1		= 1400
															1.5	2			-1	≤ 0
														-0.9					1	≥ 0
	0.5						. –				0 =			-1.1	45.				1	≤ 0
125	90	5.0							6.0				3.8			95		3.3		minimize

LINEAR PROGRAMMING PROBLEM

max (min)
$$Z = c_1 x_1 + ... + c_n x_n$$

s.t.
$$a_{11} x_1 + a_{12} x_2 + ... + a_{1n} x_n = b_1$$

$$a_{21} x_1 + a_{22} x_2 + ... + a_{2n} x_n = b_2$$

$$\vdots$$

$$a_{m1} x_1 + a_{m2} x_2 + ... + a_{mn} x_n = b_m$$

$$x_1 \ge 0, x_2 \ge 0, ..., x_n \ge 0$$

 $b_1 \geq 0, b_2 \geq 0, \dots, b_m \geq 0$

STANDARD FORM OF LP (SFLP)

$$max(min)Z = \underline{c}^T \underline{x}$$

$$\underline{A}\underline{x} = \underline{b}$$

$$\underline{x} \geq \underline{0}$$

CONVERSION OF LP INTO SFLP

□ An inequality may be converted into an equality by defining an additional nonnegative slack variable

$$O x_{slack} \geq 0$$

O replace the given inequality $\leq b$ by

$$inequality + x_{slack} = b$$

O replace the given $inequality \geq b$ by

$$inequality - x_{slack} = b$$

CONVERSION OF LP INTO SFLP

- \Box An unsigned variable x_u is one whose sign is *not* specified
- \square x_u may be converted into two signed variables x_+ and x_- with

$$x_{+} = \begin{cases} x_{u} & x_{u} \geq 0 \\ 0 & x_{u} < 0 \end{cases} \quad x_{-} = \begin{cases} 0 & x_{u} \geq 0 \\ -x_{u} & x_{u} < 0 \end{cases}$$

so that x_n is replaced by

$$x_{u} = x_{+} - x_{-}$$

SFLP CHARACTERISTICS

- \square <u>x</u> is feasible if and only if $\underline{x} \ge \underline{\theta}$ and $\underline{A}\underline{x} = b$
- \Box $S = \{\underline{x} \mid \underline{A}\underline{x} = \underline{b}, \underline{x} \geq \underline{\theta}\}$ is the feasible region
- \square $S = \varnothing \Rightarrow LP$ is infeasible
- $\square \underline{x}^*$ is optimal $\Rightarrow \underline{c}^T \underline{x}^* \ge \underline{c}^T \underline{x}, \underline{x} \in S$
- $\square \underline{x}^*$ may be unique, or may have multiple values
- $\square \underline{x}^*$ may be unbounded