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OUTLINE

d The nature of a programming or an optimization
problem

d Linear programming (LP) : salient characteristics

d The LP problem formulation

d The LP problem solution

d Extensive illustrations with numerical examples



EXAMPLE 1. HIGH/LOW HEEL SHOE
CHOICE PROBLEM

d A lady is headed to a party and is trying to find a
pair of shoes to wear; the choice is narrowed
down to two possible choices:

Q a high heel pair; and
Q alow heel pair

A The high heel shoes look more beautiful but are

not as comfortable as the competing pair

4 Which pair should she choose?



MODEL FORMULATION

4 We first quantify our assessment along the two

dimensions of looks and comfort In a table

aspect maximum h_a;sessmerllt weighting
value 19 oW

heels heels factor (%)
4.2 3.6

aesthetics 5.0
comfort 5.0

 Next, we represent the decision in terms of two

decision variables:



MODEL FORMULATION

(1 choose high

|0 otherwise

(1 choose low

|0 otherwise

d We formulate the objective to be the maximization

of the weighted assessment

max{ 70 % * aesthetics + 30 % * comfort}

d We state the objective in terms of the defined

decision variables

max Z = X, [(4.2)(0.7) + (3.5)(0.3)] + x, [(3.6)(0.7) + (4.8)(0.3)]



MODEL FORMULATION

A Next, we consider the problem constraints:
Q only one pair of shoes can be selected
Q each decision variable is nonnegative

1 We express the constraints in terms of x y and X,

.+ X, =1



PROBLEM STATEMENT SUMMARY

d Decision variables:

(1 choose high (1 choose low

|0 otherwise |0 otherwise

d Objective function:

max Z = 3.99 x,, + 3.96 X,

J Constraints:
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THE OPTIMAL SOLUTION

‘0 We determine the values x;, and x : which result

In the value of Z *such that
Z*=Z(x,’f|,x,’f)ZZ(XH,XL) (T)

for all feasible (xH , X L)

d We call such a solution an optimal solution

d A feasible solution is one that satisfies all the
constraints

d The optimal solution, denoted by (x,"; ;X l’i) , 1S
selected from all the feasible solutions to the
problem so as to satisfy ()



SOLUTION APPROACH: EXHAUSTIVE
SEARCH

d We enumerate all the feasible solutions: In this

problem there are only two alternatives:

(X, =1 (X, =0
Al S B: <
X, =0 X, =1

d We evaluate Z for Aand B and compare
Z,=3.99 Z.,=3.96
sothat Z, > Z, and so A s the optimal choice

d The optimal solution is

*

X, =1, x,=0 and Z =3.99



CHARACTERISTICS OF A
PROGRAMMING/OPTIMIZATION PROBLEM

1 The objective is to select the decision among the
various alternatives and therefore requires first
the definition of the decision variables

d We determine the “best” decision is on the basis
of the objective function and so we need to obtain
the mathematical formulation of the objective function

d The decision must satisfy each specified constraint
and so we require the mathematical statement of the

problem constraints



CLASSIFICATION OF PROGRAMMING
PROBLEMS

The problem statement is characterized by :

continuous valued
Q decision variables <
Integer valued

linear
Q objective function <

non linear

linear
Q constraints <

non linear



PROGRAMMING PROBLEM CLASSES

d Linear/nonlinear programming

A Static/dynamic programming

4 Integer programming

d Mixed programming



EXAMPLE 2: CONDUCTOR PROBLEM

d A company is producing two types of conductors
for EHV transmission lines

product_ion metal needed profits
type | - conductor (a?ﬁf/lgg) (tons/unit) ($/unit)

1 ACSR 84/19 4 1/6 3
2 ACSR 18/7 0 1/9 S|

d The supply department can provide up to 1 ton of
metal each day

d We schedule the production so as to maximize the
profits of the company



PROBLEM ANALYSIS

d Formulation of the objective: to maximize the
profits of the company

d Means to attain this objective: determine how
many units of product 1 and of product 2 to
produce each day

A Consideration of all the constraints: the daily
production capacity limits, the daily metal supply

limit and common sense requirements



MODEL CONSTRUCTION

1 We define the decision variables to be
X , = number of type 1 units produced per day
X , = number of type 2 units produced per day
1 We define the objective to be
Z = profits ($/day)
= 3X,; + 95X,

1 Sanity check for units of the objective function
($/day) = ($/unit) - (unit/day)



PROBLEM STATEMENT

 Objective function:
maxZ = 3X,+ 95X,

] Constraints:
Q capacity limits:
X, <4 X, <06

Q metal supply limit:

X X
—+-—=<1
6 9

O common sense requirements:
X, 20, x,20



PROBLEM STATEMENT

max Z = 3X,+ 5X,

S.1.



VISUALIZATION OF THE
FEASIBLE REGION

X, 20,x, <4, x,20
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VISUALIZATION OF THE
FEASIBLE REGION
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VISUALIZATION OF THE
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THE FEASIBLE REGION
X X, = 4

(2.6
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FEASIBLE SOLUTION SPACE

x, =6

max Z = 3X,; + 95X,
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CONTOURS OF CONSTANT Z
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OPTIMAL SOLUTION

d For this simple problem, we can graphically obtain
the optimal solution
 The optimal solution of this problem is:
X; =2 and X, =6

 The objective value at the optimal solution is

Z®™ =3x7+5x, = 36



LINEAR PROGRAMMING (LP)
PROBLEM DEFINITION

A linear programming problem is an optimization

problem with a linear objective function and linear

constraints.



EXAMPLE 3: ONE-POTATO, TWO-
POTATO PROBLEM

d Mr. Spud manages the Potatoes-R-Us Co. which

processes potatoes into packages of freedom

fries (F), hash browns (H) and chips (C)

d Mr. Spud can buy potatoes from two sources;

each source has distinct characteristics/limits

4 The problem is to d

guantities Mr. Spuc

etermine t

needs to

ne respective

ouy from source 1

and from source 2 so as to maximize his profits



EXAMPLE 3: ONE-POTATO, TWO-
POTATO PROBLEM

d The given data are summarized in the table

source 1 source 2 .
product sales limit (tons)
uses (%) uses (%)
F
H
C

20 30 1.8

20 10 1.2

30 30 2.4
profits ($/ton) 6 —

d The following assumptions hold:
Q 30 % waste for each source

Q production may not exceed the sales limit



ANALYSIS

 Decision variables:
X,= quantity purchased from source 1
X, = quantity purchased from source 2
d Objective function:
max Z = 95X, + 6X,
d Constraints:
0.2x,+ 0.3X,

0.2x,+ 0.1x,
0.3x,;+ 0.3X,

IA

1.8 (F)
12 (H) x,20,x,=20
2.4 (C)

IA IA



FEASIBLE REGION DETERMINATION

F-
A
2

freedom fries

>
o

12

10 ¢

g | hash browns
H
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4 4

2 4

0 2 4 6 8 .




THE FEASIBLE REGION

I
2 4 6 38 10 12
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EXAMPLE 3: CONTOURS OF
CONSTANT Z

max Z = 95X, + 6X,

N W B O O

1 2 3 4 5 6
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THE OPTIMAL SOLUTION

A The optimal solution of this problem is:

1 The objective value at the optimal solution is:

7 = Sx: +6x: = 4(0.5



IMPORTANT OBSERVATIONS

d Constant Z lines are parallel and change
monotonically along the direction normal to the
contours of constant values of Z

4 An optimal solution must be at one of the corner
points of the feasible region: fortuitously, there are
only a finite number of corner points

4 If a particular corner point gives a better solution
(in terms of its Z value) than that at every other

adjacent corner point, then, it is an optimal solution



CONCEPTUAL SOLUTION PROCEDURE

4 Initialization step: start at a corner point

 Iteration step: move to an improved adjacent corner
point and repeat this step as many times as
needed

d Stopping rule: stop when the corner point solution
IS better than that at each adjacent corner point

A This conceptual procedure forms the basis of the

simplex approach



EXAMPLE 3: THE SIMPLEX
APPROACH SOLUTION

max Z = 95X, + 6X,

Z =40

Z=01
(0,0) O

1 2 3 4 5 6
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EXAMPLE 3: THE SIMPLEX
APPROACH SOLUTION




EXAMPLE 3: THE SIMPLEX
APPROACH SOLUTION

(0,6)6 7 =136 maxZ = 5x, +6X,

(453) Z = 405
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EXAMPLE 3: THE SIMPLEX
APPROACH SOLUTION

1. Start at (0,0) with Z2(0,0)0=0
2. (1) Move from (0,0) to (0,6), Z (0,6) = 36
(i) Move from (0,6) to (4.5,3); compute Z (4.5,3) =40.5
3. Compare the objective at (4.5,3) to values at (6,0)
and at (0,6):

Z(4.5,3) > Z(6,0)
Z(4.5,3) 2 Z(0,6)
therefore, (4.5,3) is optimal

>
>



REVIEW

d Key requirements of a programming problem:
Q to make a decision, we must define the decision
variables
Q to achieve the specified objective, we must
express mathematically the objective function
Q to ensure feasibility, the decision variables must

satisfy each mathematically formulated constraint



REVIEW
d Key attributes of an LP
Q the objective function is linear
Q the constraints are linear
 Basic steps in formulating a programming problem
Q definition of decision variables
Q statement of the objective function

Q formulation of the constraints



REVIEW

0 Words of caution: care is required with units and
attention is needed to not ignore the implicit
constraints, such as nonnegativity, and the
common sense requirements in an LP formulation

d Graphical solution approach for two—variable
problems

Q feasible region determination
Q contours of constant Z

Q identification of the vertex with optimal Z *



EXAMPLE 4: QUALITY CONTOL
INSPECTION OF GOODS PRODUCED

d There are 8 grade 1 and 10 grade 2 inspectors

available for QC inspection; at least 1,800 pieces

must be inspected in each 8-hour day

] Problem data are summarized below:

Speed
(unit/h)

25

accuracy
(%)

98

15

95



EXAMPLE 4: INSPECTION OF GOODS
PRODUCED

1 Each error costs $2

d The problem is to determine the optimal

assignment of inspectors, I.e., the number of

Inspectors of grade 1 and that of grade 2 to result

In the least—cost QC inspection effort



EXAMPLE 4: FORMULATION

 Definition of decision variables:
x, = number of grade 1 inspectors assigned
x, = nhumber of grade 2 inspectors assigned
1 Objective function
Q optimal assignment: minimum costs

Q costs = wages + errors



EXAMPLE 4: FORMULATION

e each grade 1 inspector costs:

4+ 2(25)(0.02)=53%/ hr

e each grade 2 inspector costs:
3+ 2(15)(0.05)=45%/hr

o total daily inspection costs in $ are

Z =8[5x, + 4.5x,] =40x,+ 36 X, (%)



EXAMPLE 4: FORMULATION

d Constraints:
Q Jjob completion:
8(25)x, + 8(15)x, = 1,800
< 200x, +120x, = 1,800

& S5x,  +3x, =45
Q availability limit:

Xy

IAN A
o'

X, <10

Q nonnegativity:

X, 20,x, 20



EXAMPLE 4: PROBLEM STATEMENT
SUMMARY

d Decision variables:
X, = number of grade 1 inspectors assigned
X, = number of grade 2 inspectors assigned

d Objective function:

minZ =40x,+ 36 X,

] Constraints:
5X, + 3X,

\V4

45
8
10
0,x, 20

IA IA

\v4



MULTI — PERIOD SCHEDULING

d More than one period is involved

4 The result of each period affects the initial
conditions for the next period and therefore the
solution

1 We need to define variables to take into account
the initial conditions in addition to the decision

variables of the problem



EXAMPLE 5: HYDROELECTRIC
POWER SYSTEM OPERATIONS

d We consider a single operator of a system
consisting of two water reservoirs with a
hydroelectric plant attached to each reservoir

d We schedule the two power plant operations over
a two—period horizon

d We are interested In a plan to maximize the total

revenues of the system operator



EXAMPLE 5: HYDROELECTRIC
POWER SYSTEM OPERATIONS

W
res A Wa plant |V B | plant
Inflow A B/

Sa Sp

flows of water

: res B
IN the system

Inflow



EXAMPLE 5: kAf RESERVOIR DATA

parameter reservoir A reservoir B

maximum capacity

predicted inflow In
period 1
predicted inflow In
period 2
minimum allowable
level

level at start of period 1




EXAMPLE 5: SYSTEM
CHARACTERISTICS

plant A 1 kAT >| olant A | 400 MWh >
|

200 MWh

max KAf for generation per period

150

87.5




EXAMPLE 5: SYSTEM
CHARACTERISTICS

d Two-—tier price for the MWh demand in each period
Q up to 50,000 MWh can be sold @ 20 $ /MWh
Q all additional MWh are sold @ 14 $ /MWh

A
$/MWh
non-linear objective function

» MWh




EXAMPLE 5: DECISION VARIABLES

quantity denoted

energy sold at 20 $/MWh
energy sold at 14 $/MWh
plant A water supply for generation

plant B water supply for generation

reservoir A spill

reservoir B spill

reservoir A end of period i level

reservoir B end of period 1 level
superscript 1denotes period I,1=1, 2




EXAMPLE 5: OBJECTIVE FUNCTION

maximize total revenues from sales

max 2 = ZO(x;I + qu) + 14(xi + xz)

Lt I

Y

< v,
Y

4 of the 16 decision variables
2 for each period

units of Z arein $



EXAMPLE 5: CONSTRAINTS

1 Period 1 constraints

Q energy conservation in a lossless system

- total generation 400w , + 200w,  (MWh)

- total sales x;, + X; (MWh)

* |osses are negelected and so

X, + X, = 400w , + 200w

Q maximum available capacity limits

W
Wy

<
<

150
87.5



EXAMPLE 5: CONSTRAINTS

Q reservoir conservation of flow relations

e reservoir A:
W, +S,+r, = 1900+ 200 = 2,100 (KAf)

e reservoir B:
Wg +Sg + g = 850+40+w, +5, (KAf)
57
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EXAMPLE 5: CONSTRAINTS

Q limitations on reservoir variables
e reservoir A:
1,200 < r, < 2,000 (KAF)
e reservoir B:

800 < r, <1,500 (KATF)

Q sales constraint

x < 50,000 (KAF)



EXAMPLE 5: CONSTRAINTS

] Period 2 constraints

Q energy conservation in a lossless system

e total generation 400w ; + 200w 2

e total sales

X2 + X!

e l|osses are neglected and so

X5 + X. = 400w ; + 200w ;

Q maximum available capacity limits

WA
Wg

<
<

150
87.5

(MWh)
(MWh)



EXAMPLE 5: CONSTRAINTS

Q reservoir conservation of flow relations

e reservoir A:
W:+s:+r; =r,+130 (KAF)

e reservoir B:
WS +Se+rs =r +15+wW. +5s; (kAf)
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EXAMPLE 5: CONSTRAINTS

Q limitations on reservoir variables
e reservoir A:
1,200 < r 7 £ 2,000 (KATF)
e reservoir B:
800 < rs < 1,500 (KAT)

Q sales constraint

x 2 < 50,000 (KAF)



EXAMPLE 5: PROBLEM STATEMENT

1 16 decision variables:
X, X, W, W, S S, F T, i =12

5 A2 B2 A2 B2

d Objective function:
max Z = 20(X;, + X;) + 14(x] + x7)
d Constraints:
Q 20 constraints for the periods 1 and 2

Q non-negativity constraints on all variables



EXAMPLE 6: DISHWASHER AND
WASHING MACHINE PROBLEM

4 The Appliance Co. manufactures dishwashers and

washing machines

1 The sales targets for next four quarters are:

product variable
1 2 3 4

dishwasher

washing
machine




EXAMPLE 6: QUARTERLY COST
COMPONENTS

quarter t costs
cost component parameter ($/unit)

1 2 3 4

dishwasher

manufacturing
($/unit) washing

machine

dishwasher
storage

($/unit) washing
machine

hourly labor ($ /hour) 6.0




EXAMPLE 6: CONSTRAINTS

d Each dishwasher (washing machine) requires 1.5
(2) hours of labor

d The labor hours in each quarter cannot grow or
decrease by more than 10 %; there are 5,000 h of
labor in the quarter preceding the first quarter

d At the start of the first quarter, there are 750 dish-

washers and 50 washing machines in storage



EXAMPLE 6: THE PROBLEM

How to schedule the production in each of the

four quarters so as to minimize the costs while

meeting the sales targets?



EXAMPLE 6: QUARTER t DECISION
VARIABLES

number of dishwashers produced

number of washing machines produced

final inventory of dishwashers

final inventory of washing machines

avalilable labor hours during Q,




EXAMPLE 6: OBJECTIVE FUNCTION

minimize the total costs for the four quarters

manufacturing storage
COStS COStS

N N
. . N N
minZ = cd, +v,w, + |, +k;s + p,h «— quarterl

+ c,d, +v,w,+ |,r, +K,s, + p,h, «— quarter?2
+ c,d, +v,w, + .1, +K,S, + ph,<— quarter 3

+ c¢cd, +v,w,+],r, +k,s,+ p,h, «— quarter 4
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EXAMPLE 6: CONSTRAINTS

d Quarterly flow balance relations:

d,,w, d,,w, d,,w, d,,w,




EXAMPLE 6: CONSTRAINTS

d Quarterly labor constraints

(15d +2w —h <0
< t =123,4

09h , < h < 1ih_

L t—1 t

h = 5,000

0



EXAMPLE 6: PROBLEM STATEMENT

1250

1150

1.5

<0

> 4500

< 5500

1300

1500

<0

-0.9

>0

-1.1

<0

3000

1000

<0

-0.9

>0

-1.1

<0

1000

1400

-1

<0

-0.9

1

>0

-1.1

1

<0

125

90

5.0

4.3
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6.0

130

100

4.5

3.8

6.0

125

95

4.5

3.8

6.8

126

95

4.0

3.3

6.8

minimize




LINEAR PROGRAMMING PROBLEM

max (min) Z = ¢;X;+...+C X,

S.1.
dpp Xq T A Xy + ..t a,X,= by
Ay X1 T Ay X, + ..+t a,,X,= b,
amlxl + am2X2 LI amn Xn — bm

X, 20, X,>20,...,X,2>20

b, >0,b, >0,..,b >0



STANDARD FORM OF LP (SFLP)

max (min) Z

| ><
\Y4
=)

c'X

1S

/ coefficient matrix

A E Rmxn

— o X eR"
decision
vector beR"

/ ceR”

requirement T

vector profits

(costs)
vector



CONVERSION OF LP INTO SFLP

d An inequality may be converted into an equality
by defining an additional nonnegative slack

variable

Q X >0

slack =

Q replace the given inequality < b by

Inequality + x ., =D

slack
Q replace the given inequality > b by

Inequality — x_. ., =D

slack



CONVERSION OF LP INTO SFLP

d An unsigned variable x,Is one whose sign Is not
specified

d x, may be converted into two signed variables x ,

and x _with

X, X,20 0 X, 20
X, = 1 X_ = 1

0 X, <0 -X, X, <0

so that x, Is replaced by

X, = X, =X

u + —



SFLP CHARACTERISTICS
Q X js feasible if and only if X20 and AXx=0D
d S ={x|AXx=Db, Xx=>0} is the feasible region
d S=9 = LPis infeasible
Q X is optimal = ¢'x">c'x,xeS

d X may be unique, or may have multiple values

Q x may be unbounded
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