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 The nature of a programming or an optimization 

problem

 Linear programming (LP ) : salient characteristics

 The LP problem formulation 

 The LP problem solution

 Extensive illustrations with numerical examples

OUTLINE
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 A lady is headed to a party and is trying to find a 

pair of shoes to wear; the choice is narrowed 

down to two possible choices:

 a high heel pair; and

 a low heel pair

 The high heel shoes look more beautiful but are 

not as comfortable as the competing pair

 Which pair should she choose?

EXAMPLE  1:  HIGH/LOW  HEEL  SHOE  
CHOICE  PROBLEM
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 We first quantify our assessment along the two 

dimensions of looks and comfort in a table

 Next, we represent the decision in terms of two 

decision variables:

MODEL  FORMULATION

aspect maximum 
value

assessment weighting

factor (%)
high 
heels

low 
heels

aesthetics 5.0 4.2 3.6 70

comfort 5.0 3.5 4.8 30
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 We formulate the objective to be the maximization 

of the weighted assessment

 We state the objective in terms of the defined 

decision variables

MODEL  FORMULATION

1 1

0 0
H L

choose high choose low
x x

otherwise otherwise

  = = 
  

{7 0 * }0 * 3% aesthetics % comfmax ort+

[(4.2)(0.7) (3.5)(0.3)] [(3.6)(0.7) (4.8)(0.3)]H Lmax Z x x= + + +
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 Next, we consider the problem constraints:

 only one pair of shoes can be selected

 each decision variable is nonnegative 

 We express the constraints in terms of        and

MODEL  FORMULATION

1

,

H L

H L

x x

x 0 x 0

+ =

≥ ≥

Hx Lx
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 Decision variables:

 Objective function:

 Constraints:

PROBLEM  STATEMENT  SUMMARY

1

,

H L

H L

x x

x 0 x 0

+ =

≥ ≥

1 1

0 0
H L

choose high choose low
x x

otherwise otherwise

  = = 
  

3.99 3.96H Lmax Z x x= +
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 We determine the values        and        which result 
in the value of       such that   

for all  feasible
 We call such a solution an optimal solution
 A  feasible solution is one that satisfies all the 

constraints
 The optimal solution, denoted by                  , is 

selected from all the feasible solutions to the 
problem so as to satisfy 

THE  OPTIMAL  SOLUTION

Hx ∗
Lx ∗

Z ∗

( ) ( )H L H LZ Z x x Z x x, ,∗ ∗ ∗= ≥

( )H Lx x,∗ ∗

(†)

(†)

( ),H Lx x
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 We enumerate all the feasible solutions:  in this 

problem there are only two alternatives:

 We evaluate Z for A and B and compare

so that                 and so A is the optimal choice

 The optimal solution is
and

SOLUTION  APPROACH:  EXHAUSTIVE 
SEARCH

1 0
: :

0 1

H H

L L

x x
A B

x x

= =  
 

= =  

3.99 3.96A BZ Z= =

A BZ Z>

* *1 , 0H Lx x= = * 3.99Z =
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 The objective is to select the decision among the 

various alternatives and therefore requires first 

the definition of the decision variables

 We determine the “best” decision is on the basis 

of the objective function and so we need to obtain 

the mathematical formulation of the objective function 

 The decision must satisfy each specified constraint

and so we require the mathematical statement of the 

problem constraints

CHARACTERISTICS  OF  A  
PROGRAMMING/OPTIMIZATION  PROBLEM
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The problem statement is characterized by :

 decision variables

 objective function

 constraints

CLASSIFICATION  OF  PROGRAMMING 
PROBLEMS

continuous valued

integer valued

linear

non linear

linear

non linear
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PROGRAMMING  PROBLEM  CLASSES

 Linear/nonlinear programming

 Static/dynamic programming

 Integer programming

 Mixed programming



ECE 307 © 2005 - 2018 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved. 13

 A company is producing two types of conductors 
for EHV transmission lines

 The supply department can provide up to 1 ton of 
metal each day

 We schedule the production so as to maximize the 
profits of the company

EXAMPLE  2:  CONDUCTOR  PROBLEM

type conductor
production 

capacity
(unit/day)

metal needed
(tons/unit)

profits
($/unit)

1 ACSR 84/19 4 1/6 3

2 ACSR 18/7 6 1/9 5
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 Formulation of the objective: to maximize the 

profits of the company

 Means to attain this objective: determine how 

many units of product 1 and of product 2 to 

produce each day

 Consideration of all the constraints: the daily 

production capacity limits, the daily metal supply 

limit and common sense requirements

PROBLEM  ANALYSIS
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 We define the decision variables to be 

=   number of type  1 units produced per day

=   number of type  2 units produced per day

 We define the objective to be

Z =   profits ($/day)

=    3 x 1 +  5 x 2

MODEL  CONSTRUCTION

1x

 Sanity check for units of the objective function
($/day) = ($/unit) • (unit/day)

2x
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 Objective function:

 Constraints:
 capacity limits:

 metal supply limit:

 common sense requirements:

PROBLEM  STATEMENT

1 24 6x x≤ ≤

1 20 , 0x x≥ ≥

1 23 5max Z x x= +
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PROBLEM  STATEMENT

1 2

1

2

1 2

1 2

3 5

. .

4

6

1
6 9

0 , 0

max Z x x

s t

x

x

x x

x x

= +

≤

≤

+ ≤

≥ ≥
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VISUALIZATION  OF  THE  
FEASIBLE REGION

( ),0 0

2x

1 1 2, 4 ,x 0 x x 0≥ ≤ ≥

1 4x =

( )4,0
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VISUALIZATION  OF  THE  
FEASIBLE REGION

( ),60

2x

1x
( ),0 0
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VISUALIZATION  OF  THE  
FEASIBLE REGION

1x( ),0 0

2x

1 2,x 0 x 0≥ ≥

1 2 1
6 9
x x

+ ≤( ),90

( )6,0
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THE  FEASIBLE REGION

feasible
region

( ),60

( )2,6

1 4x =

2 6x =

( )4,3

( )4,0( ),0 0
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FEASIBLE SOLUTION  SPACE

( )4,3

( )2,2°

16Z =

1 23 5max Z x x= +

( )4,0( ),0 0

27Z =

( )1.5,4.5

( ),60

2x

( )2,6

1 4x =
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CONTOURS  OF  CONSTANT  Z

1 2 1
6 9
x x

+ =

( )4,3

1 23 5max Z x x= +
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 For this simple problem, we can graphically obtain 

the optimal solution

 The optimal solution of this problem is:

 The objective value at the optimal solution is

OPTIMAL  SOLUTION

1 22 6x x∗ ∗= =

Z x x1 23 5 36∗ ∗ ∗= + =

and
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A linear programming problem is an optimization 

problem with a linear objective function and linear

constraints.

LINEAR  PROGRAMMING  (LP)  
PROBLEM  DEFINITION
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 Mr. Spud manages the Potatoes-R-Us Co. which 

processes potatoes into packages of freedom 

fries ( F ), hash browns (H ) and chips (C )

 Mr. Spud can buy potatoes from two sources; 

each source has distinct characteristics/limits

 The problem is to determine the respective 

quantities Mr. Spud needs to buy from source 1

and from source 2 so as to maximize his profits

EXAMPLE  3:  ONE-POTATO,  TWO-
POTATO PROBLEM



ECE 307 © 2005 - 2018 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved. 27

 The given data are summarized in the table

 The following assumptions hold:

 30 % waste for each source  

 production may not exceed the sales limit

EXAMPLE  3:  ONE-POTATO,  TWO-
POTATO PROBLEM

product
source 1
uses (%)

source 2
uses (%)

sales limit (tons)

F 20 30 1.8
H 20 10 1.2
C 30 30 2.4

profits ($/ton) 5 6 –
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 Decision variables:
x 1 = quantity purchased from source 1

x 2 =  quantity purchased from source 2

 Objective function:

 Constraints:

ANALYSIS

1 25 6max Z x x= +

1 2

1 2 1 2

1 2

0.2 0.3 1.8 ( )

0.2 0.1 1.2 ( ) ,

0.3 0.3 2.4 ( )

x x F

x x H x 0 x 0

x x C

+ ≤

+ ≤ ≥ ≥

+ ≤
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FEASIBLE  REGION  DETERMINATION

6

4

2

8

2 4 6 80

chips
C

1x

2x
8

6

4

2

2 4 60

freedom fries
F

1x

2x

hash browns
H

6

4

2

12

10

8

2 4 6 80 1x

2x
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THE  FEASIBLE  REGION

2 4 6 8 10 12

2

4

6
8

10

12

feasible
region

2x

1x
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EXAMPLE  3:  CONTOURS  OF  
CONSTANT  Z

1

2

3
4

5

6

1 2 3 4 5 6

(4.5,3)

1x

2x

1 25 6max Z x x= +
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 The optimal solution of this problem is:

 The objective value at the optimal solution is:

THE  OPTIMAL  SOLUTION
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 Constant  Z lines are parallel and change 
monotonically along the direction normal  to the 
contours of constant values of  Z

 An optimal solution must be at one of the corner 

points of the feasible region: fortuitously, there are 
only a finite number of corner points

 If a particular corner point gives a better solution    
( in terms of its Z value) than that at every other 
adjacent corner point, then, it is an optimal solution

IMPORTANT  OBSERVATIONS
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 Initialization step: start at a corner point

 Iteration step: move to an improved adjacent corner 

point and repeat this step as many times as 

needed

 Stopping rule: stop when the corner point solution 

is better than that at each adjacent corner point

 This conceptual procedure forms the basis of the 

simplex approach

CONCEPTUAL  SOLUTION  PROCEDURE
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EXAMPLE  3:  THE  SIMPLEX  
APPROACH  SOLUTION

1

2

3
4

5

6

1 2 3 4 5 6
0

Z = 40

(4.5,3)

(6,0)
Z = 30

Z = 0

Z = 36
(0,6)

(0,0)

2x

1x

1 25 6max Z x x= +
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EXAMPLE  3 :  THE  SIMPLEX 
APPROACH  SOLUTION

30063

40.534.52

36601

0000

Zstep 1x2x
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2x

0 1x
1 2 3 4 5

1

2

3

4

5
6

6

Z  = 40.5(4.5,3)

Z = 0(0,0)

Z = 36(0,6)

(6,0)Z = 30

1 2= 5 + 6max Z x x

EXAMPLE  3 :  THE  SIMPLEX  
APPROACH  SOLUTION
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1. Start at  (0,0) with  Z (0,0) = 0

2. (i) Move from (0,0) to (0,6), Z (0,6) = 36

(ii) Move from (0,6) to (4.5,3); compute Z (4.5,3) = 40.5

3. Compare the objective at (4.5,3) to values at (6,0)

and at (0,6):

therefore, (4.5,3) is optimal

EXAMPLE  3 :  THE  SIMPLEX  
APPROACH  SOLUTION

(4.5, 3) (6, )
(4.5,3) ( ,6)

Z Z 0
Z Z 0

≥
≥
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 Key requirements of a programming problem:

 to make a decision, we must define the decision

variables

 to achieve the specified objective, we must 

express mathematically the objective function

 to ensure feasibility, the decision variables must 

satisfy each mathematically formulated constraint

REVIEW
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 Key attributes of an LP 

 the objective function is linear

 the constraints are linear

 Basic steps in formulating a programming problem

 definition of decision variables

 statement of the objective function

 formulation of the constraints

REVIEW
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 Words of caution: care is required with units and 

attention is needed to not ignore the implicit 

constraints, such as nonnegativity, and the 

common sense requirements in an LP formulation

 Graphical solution approach for two–variable 

problems

 feasible region determination

 contours of constant Z

 identification of the vertex with optimal Z ∗

REVIEW
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 There are 8 grade 1 and 10 grade 2 inspectors 

available for QC inspection; at least 1,800 pieces 

must be inspected in each 8–hour day

 Problem data are summarized below:

EXAMPLE  4 :  QUALITY CONTOL 
INSPECTION  OF  GOODS PRODUCED

grade
level

speed
(unit/h)

accuracy
(%)

wages 
($/h)

1 25 98 4

2 15 95 3
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EXAMPLE  4 :  INSPECTION  OF  GOODS 
PRODUCED

 Each error costs $ 2

 The problem is to determine the optimal 

assignment of inspectors, i.e., the number of 

inspectors of grade 1 and that of grade 2 to result 

in the least–cost QC inspection effort
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EXAMPLE  4 :  FORMULATION

 Definition of decision variables:

= number of grade 1 inspectors assigned

= number of grade 2 inspectors assigned

 Objective function

 optimal assignment: minimum costs

 costs  = wages  + errors

1x

2x
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• each grade 1 inspector costs: 

4 + 2 (25)(0.02)  =  5 $/hr

• each grade 2 inspector costs: 

3 + 2 (15)(0.05)  =  4.5 $/hr

• total daily inspection costs in $ are

EXAMPLE  4 :  FORMULATION

4 + 2 (25)(0.02) = 5 $ / hr

3 + 2 (15)(0.05) = 4.5 $ / hr

1 2 1 28[5 4.5 ] 40 36 ( )Z x x x x $= + = +
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 Constraints:
 job completion:

 availability limit:

 nonnegativity:

EXAMPLE  4 :  FORMULATION

1

2

8
10

x
x

≤

≤

1 2,x 0 x 0≥ ≥

 
⇔
⇔
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 Decision variables:
x 1 = number of grade 1 inspectors assigned
x 2 = number of grade 2 inspectors assigned

 Objective function:

 Constraints:

EXAMPLE  4 :  PROBLEM  STATEMENT 
SUMMARY

1 2

1

2

1 2

5 3 45 

8

10

,

x x

x

x

x 0 x 0

+ ≥

≤

≤

≥ ≥

1 240 36min Z x x= +
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 More than one period is involved

 The result of each period affects the initial 

conditions for the next period and therefore the 

solution

 We need to define variables to take into account 

the initial conditions in addition to the decision 

variables of the problem

MULTI – PERIOD  SCHEDULING
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EXAMPLE  5 :  HYDROELECTRIC  
POWER  SYSTEM  OPERATIONS

 We consider a single operator of a system 

consisting of two water reservoirs with a 

hydroelectric plant attached to each reservoir

 We schedule the two power plant operations over 

a two–period  horizon 

 We are interested in a plan to maximize the total 

revenues of the system operator
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EXAMPLE  5 :  HYDROELECTRIC  
POWER  SYSTEM  OPERATIONS

inflow

res A res A plant 
A

w A

s A s B

res B
inflow

res B plant 
B

w A w B w B

flows of water 
in the system
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EXAMPLE  5 : kAf RESERVOIR  DATA

parameter reservoir A reservoir B

maximum capacity 2,000 1,500

predicted inflow in
period 1 200 40

predicted inflow in
period 2 130 15

minimum allowable
level 1,200 800

level at start of period 1 1,900 850
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EXAMPLE  5 :  SYSTEM  
CHARACTERISTICS

A

B

max kAf  for generation per period 

150

87.5

reservoir

200 MWhplant B 1 kAf
plant B

plant A 1 kAf 400 MWhplant A
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EXAMPLE  5 :  SYSTEM 
CHARACTERISTICS

 Two–tier price for the MWh demand in each period
 up to 50,000 MWh can be sold @ 20 $ /MWh

 all additional MWh are sold @ 14 $ /MWh

Hx

20 
$/MWh

14 $/MWh

50,000

non-linear objective function
$/MWh

MWh
Lx
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variable quantity denoted units
energy sold at 20 $/MWh MWh
energy sold at 14 $/MWh MWh

plant A water supply for generation kAf
plant B water supply for generation kAf

reservoir A spill kAf
reservoir B spill kAf

reservoir A end of period i level kAf
reservoir B end of period i level kAf

superscript i denotes period i, i = 1, 2

EXAMPLE  5 :  DECISION  VARIABLES

i
Hx
i
Lx
i

Aw
i
Bw
i

As
i
Bs
i
Ar
i

Br
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EXAMPLE  5 :  OBJECTIVE  FUNCTION

maximize total revenues from sales

4 of the 16 decision variables
2 for each period

units of are in $Z
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 Period 1 constraints

 energy conservation in a lossless system

• total generation

• total sales

• losses are negelected and so

 maximum available capacity limits

EXAMPLE  5 :  CONSTRAINTS

( )1 1400 200A Bw w MWh+

( )1 1
H L MWhx x+

1 1 1 1400 200H L A Bx x w w+ = +

1

1

150
87.5

A

B

w
w

≤
≤
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Res.level at 
e.o.p. 0

 reservoir conservation of flow relations

EXAMPLE  5 :  CONSTRAINTS

1 1 1 1,900 200 2,100A A Aw s r+ + = + =

1 1 1 1 1850 40B B B A Aw s r w s+ + = + + +

• reservoir A:

• reservoir B:

( kAf )

Res.level at 
e.o.p. 0

predicted 
inflow

Res.level at 
e.o.p. 0

res. level at 
e.o.p. 0

Res.level at 
e.o.p. 0

res. level at 
e.o.p. 1

( kAf )
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 limitations on reservoir variables

• reservoir A:

• reservoir B:

 sales constraint

EXAMPLE  5 :  CONSTRAINTS

11, 200 2,000 ( )Ar kAf≤ ≤

1800 1,500 ( )Br kAf≤ ≤

1 50,000 ( )Hx kAf≤
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 Period 2 constraints

 energy conservation in a lossless system

• total generation

• total sales

• losses are neglected and so

 maximum available capacity limits

EXAMPLE  5 :  CONSTRAINTS

( )2 2400 200A Bw w MWh+

( )2 2
H L MWhx x+

2 2 2 2400 200H L A Bx x w w+ = +

2

2

150
87.5

A

B

w
w

≤
≤



ECE 307 © 2005 - 2018 George Gross, University of Illinois at Urbana-Champaign, All Rights Reserved. 60

 reservoir conservation of flow relations

EXAMPLE  5 :  CONSTRAINTS

2 2 2
A A A Aw s r r 1 130+ + = +

+ +2 2 2 1 2 215B B B B A Aw s r r w s= + + +

• reservoir A:

• reservoir B:

( kAf )

Res.level at 
e.o.p. 0

predicted 
inflow

Res.level at 
e.o.p. 0

res. level at 
e.o.p. 1

Res.level at 
e.o.p. 0

res. level at 
e.o.p. 2

( kAf )
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 limitations on reservoir variables

• reservoir A:

• reservoir B:

 sales constraint

EXAMPLE  5 :  CONSTRAINTS

21,200 2,000≤ ≤Ar

2800 1,500≤ ≤Br

2 50,000Hx ≤

( kAf )

( kAf )

( kAf )
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EXAMPLE  5 :  PROBLEM  STATEMENT

 16 decision variables:

 Objective function:

 Constraints:

 20 constraints for the periods 1 and 2

 non-negativity constraints on all variables

( ) ( )1 2 1 220 14H H L Lmax Z x x x x= + + +
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EXAMPLE  6 : DISHWASHER  AND 
WASHING  MACHINE  PROBLEM

product variable
quarter t

1 2 3 4

dishwasher D t 2,000 1,300 3,000 1,000

washing 
machine

W t 1,200 1,500 1,000 1,400

 The Appliance Co. manufactures dishwashers and 

washing machines 

 The sales targets for next four quarters are:
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EXAMPLE  6 : QUARTERLY  COST  
COMPONENTS

cost component parameter
quarter t costs

($/unit)

1 2 3 4

manufacturing 
($/unit)

dishwasher c t 125 130 125 126

washing 
machine v t 90 100 95 95

storage
($/unit)

dishwasher j t 5.0 4.5 4.5 4.0

washing 
machine k t 4.3 3.8 3.8 3.3

hourly labor ($ /hour) p t 6.0 6.0 6.8 6.8
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 Each dishwasher (washing machine) requires 1.5

(2) hours of labor

 The labor hours in each quarter cannot grow or 

decrease by more than 10 %; there are 5,000 h of 

labor in the quarter preceding the first quarter

 At the start of the first quarter, there are 750 dish-

washers and 50 washing machines in storage

EXAMPLE  6 : CONSTRAINTS
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How to schedule the production in each of the 

four quarters so as to minimize the costs while 

meeting the sales targets?

EXAMPLE  6 : THE PROBLEM
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EXAMPLE  6 :  QUARTER  t  DECISION  
VARIABLES

symbol variable

number of dishwashers produced

number of washing machines produced

final inventory of dishwashers

final inventory of washing machines

available labor hours during Qt

td

tw

tr

ts

th

t   =   1, 2, 3, 4
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EXAMPLE  6 : OBJECTIVE  FUNCTION

minimize the total costs for the four quarters

min Z + +

            + + +

     

c d + v w

c d + v w

c d +

j r + k s

j r + k s

jv w

c d + v w

       + + +

   

p h

p h

p h

p h         

r + k s

j r ++ + +k s

1 1 1 1

2 2 2 2

3 3 3

1 1 1 1

2 2 2 2

3 3 3 3

4 4 4 4

3

4 4 4 4

1 1

2 2

3 3

4 4

=

manufacturing 
costs

storage 
costs

labor 
costs

quarter 1

quarter 2

quarter 3

quarter 4
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 Quarterly flow balance relations:

EXAMPLE  6 : CONSTRAINTS

1

1

1, 2, 3, 4
t t t t

t t t t

r d r D
t

s w s W
−

−

+ − =
=

+ − =





D ,W1 1

t = 1

d ,w1 1

0 0r , s r , s1 1
r , s2 2 r , s3 3 r , s4 4

d ,w2 2 d ,w3 3 d ,w4 4

D ,W2 2
D ,W4 4D ,W3 3

t = 2 t = 3 t = 4
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EXAMPLE  6 : CONSTRAINTS

 Quarterly labor constraints

1 1

1.5 2

1, 2, 3, 4

0.9 1.1

5, 000

t t t

t t t

0

d w h 0

t

h h h

h

− −

+ − ≤

=

≤ ≤

=
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EXAMPLE  6 : PROBLEM  STATEMENT
h4s4r4w4d4h3s3r3w3d3h2s2r2w2d2h1s1r1w1d1

minimize6.83.34.0951266.83.84.5951256.03.84.51001306.04.35.090125
01-1.1
01-0.9
0-121.5

=  1400-111
=  1000-111

01-1.1
01-0.9
0-121.5

=  1000-111
=  3000-111

01-1.1
01-0.9
0-121.5

=  1500-111
=  1300-111

55001
45001
0-121.5

=  1150-11

=  1250-11

≤
≥
≤

≤
≥
≤

≤
≥
≤

≤
≥
≤
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LINEAR  PROGRAMMING  PROBLEM

max (min) Z =  c 1 x 1 + ... + c n x n

s.t.

a 11 x 1 +  a 12 x 2 +   ... +  a 1n  x n =   b 1

a 21 x 1 +  a 22 x 2 +   ... +  a 2n  x n =   b 2

a m1 x 1 +  a m2 x 2 +   ...  +  a mn  x n  =  b m

x 1 0,  x 2 0, ... , x n  0

b 1 0, b 2 0, ... , b m 0≥ ≥ ≥

≥ ≥ ≥
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STANDARD  FORM  OF  LP (SFLP)

coefficient matrix

decision
vector

requirement
vector profits

(costs)
vector

xm nA∈ n

m

n

x

b

c

∈

∈

∈







( ) Tmax min Z c x

A x b

x 0

=

=

≥
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 An inequality may be converted into an equality 
by defining an additional nonnegative slack

variable

 x

 replace the given inequality  ≤ b by

 replace the given inequality  ≥   b by

CONVERSION  OF  LP INTO  SFLP

slackx 0≥

slackinequality x b+ =

slackinequality x b− =
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CONVERSION  OF  LP INTO  SFLP

 An unsigned variable x u  is one whose sign is not 

specified

 x u may be converted into two signed variables x + 

and x - with

so that x u is replaced by

ux x x+ −= −

u u

u

x       x 0
x

0        x < 0+

≥= 


u

u u

 0        x 0
x

 x      x < 0−

≥= −
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SFLP CHARACTERISTICS

 is feasible if and only if and

 is the feasible region

 LP is infeasible

 is optimal

 may be unique, or may have multiple values

 may be unbounded

x ∗

x ∗

x ∗

{ | , }S x A x b x 0= = ≥

x x 0≥ A x b=

S = ∅ ⇒

,T Tc x c x x S∗ ≥ ∈
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